

INFORMATION SERVICE

þ

27

NASA TT F-14,365 PHASE-BOUNDARY IMPEDANCE OF (NO BLE-METAL ELECTRODES IN THE REGION OF HYDORGEN ADSORPTION 5 I. ACTIVATED PLATINUM ELECTRODES Cover Pade Title M. Breiter, H. Kammermaier, and C. A. Knorr 10 With a special system of measuring electrodes the authors investigate hydrogen adsorption on platinum electrodes. Comparisons using direct and alternating currents, high and low voltages, and various ranges are both described and 15 charted for atomic and molecular hydrogen with the almost always linear proportions of the functions provided. Cover Pade Source INTRODUCTION 20 Tests on smooth platinum electrodes in 8n-H₂SO₄ with H₂ rinsing are dis-/37* In order to be able to compare successively determined measuring values 25 with each other, it has proven to be necessary to activate the electrodes by anodic current impulses between every measurement. This treatment makes it possible to obtain a high activity surface condition on the platinum which can be 30 uniformly reproduced. Without these measurements there are generally at first temperal changes in the activity which only lead to a uniformly constant final position of rather low activity after a nather long period of time, but which is only conditionally reproducible. The frequency and potential dependency of the alternating current resistance of the activated platinum electrodes can be discribed quantitatively to a large extent in all of the over voltage ranges investigated, with consideration given only to the adsorption of the H atoms, the diffusion of the H_2 molecules and the discharge of the H^{\dagger} ions. Test Methodology Figure 1 diagrams the alternating current and the direct current circuit of the measurement apparatus. The variable frequency alternating current, produced with a RC Generator from the Rohde and Schwarz Company, is divided into two parallel branches one of which contains the test cell (between E and G) and the Numbers in the margin indicate pagination in the foreign text.

Even

Roman

other a measurement resistance (between D and G) adjustable from 0.1Ω to $11k\Omega$. The measurement of the absolute amount (AR) Toft the electrode impedance takes place in such a way that first the alternating volatage UFG between the pick-up and the grounded test electrodes was given on a high ohm (initial resistance IMA) alternating current tube volt meter of the Philips Company and adjusted by varying the initial generator voltage at 5mV. Then, without changing the initial voltage of the generator, the same alternating voltage was picked up with a variable measurement (DG) through which the same alternating flows as through the test cell, because of the uniformity of the very great barrier resistance (A-B and 15 A-C) and capacitors (B-D and C-E) of the relative magnitude and phase relation-The value of the measurement resistance adjusted in this way was then equal to the absolute amount of impedance, which could be exactly determined at Cover Pade Source 20 about 2% in this way. Determination of the phase angle ϕ of the direct current Potential Barrier resistance was achieved by using Measurement 25 a homemade measuring appa-Resistance Rc Generator In it, according to ratus [1]. a principle originating with electrode 30 Opitz [2,3], two out of phase alternating voltages of the Potential Barrier TOD: same magnitude are increased Figure 1 independently of each other and Circuit Diagram of the Measurement Arrangement 35 of the phase about 200 times at the test electrode and at the measurement resistance, and then 40 . turned into square waves of a constant magnitude. Producing the square waves, which occurs with the Opitz process quite simply with heavy overloading of suitable triodes, is achieved here by means of two amplitude discriminators according 45 to the "Schmitt-Trigger" circuit [4]. The use of this so called flip-flop circuit has the advantage on the one hand that with two potentiometers the square waves corresponding to the two alternating voltages can always be adjusted so exactly to the same length and, on the other hand, the impulses have a very good transition length (10 sec). The two square waves, which are mutually out of

Roman

Even

bb0

 $\overline{\text{ph}}$ as their pertinent alternating voltages, are now superimposed upon one another with the (aid 70ft la backlash circuit consisting off 5 germanium diodes in such a way that a constant direct current is produced only during the time that they do not (overlap) e Thus the mean value in time of the rectified current denoted by a galvanometer is proportional to the phase displacement φ which confirms the assembly calibration undertaken repeatedly with the help of RC members with suitable dimensions. Before the measurements the same alternating voltage was always applied to the two imputs of the phase meter and the phase displacement O current indicated by the apparatus was always set 15 at a minimum by means of the two mentioned potentiometers in order to guarantee the specified uniformity of the two square waves. In addition the exact correspondence of reading of the 90° phase displacement with the calibration was 20 checked repeatedly with the help of static capacitors with a very small loss angle which could be connected to the alternating current circuit as objects of measurement instead of the test cell. In this way the phase displacement φ could be exactly determined in the frequency range 30 Hz to 20kHz with uniform sensitivity over_the_angel_spread_form_0_to_90°_within_1°/ /38

The way of producing the direct current pre-polarization was different depending upon whether the tests were carried out with negative or positive over-The direct current circuit shown in Figure 1, which was separated from load. the adequatly large choke coil Dr from the alternating current circuit, was used in the research in the area of cathodic overload. A stationary potential was 35 induced on the electrode by a constant direct current whose magnitude could be regulated by an adjustable potential barrier. In order to eliminate the depolarizing effect of the anodically developed oxygen on the test electrode, the direct 40 current was conducted through the counterelectrode H, found in another part of the vessel. Hôwever, this method of producing the direct current polarization could not be used in the region of the Haldiffusion limiting current, since the potential here is subject to large punctuations with a strong current, as is well Therefore the direct current pre-polarization was set up in the positive overload area indthe tests by means of a low resistance potentiometer circuit to force the potential constantly upon the electrode instead of the current. In 50 order to avoid a noticable voltage drop, the platinum plated platinum cylinder

3

Roman

	conveying the alternating current, set for 0 potential with the H ₂ rinsing ap-
	plied, was used here as a counteredectrode T; Measurement of the limiting current
	took place by determining the voltage drop at the choke coil, which in this case
	was connected from the platinum cylinder.
	In the test vessel [5] was found the grounded test electrode in a field
40	cylindrically symmetrical with respect to the alternating current. In order to
	keep edge disturbances in the field as small as possible, a glass bead was sold-
	ered at one end of the electrode and on the other side the electrolyte was added
	to exactly the height of the electrode. The electrolyte resistance between the
15	test electrode and the platinum plated pick-up load submerged in the vicinity,
~)	including the conductor resistances present, was determined at very high fre-
	quencies (150-300 kHz) by measuring the absolute amount of the alternating cur-
20	rent resistance, which becomes practically independent of frequency here. In the
	measurement discribed below the electrolyte resistance determined in this way
	was always deducted from the resistance component of the alternating current
25	resistance in series.
	(4")
	A platinum plated platinum plate, rinsed with molecular hydrogen, was used
20	as the test electrode I (cf. Figure 1) to measure the over voltage. The part
30	of the vessel containing the comparison electrode was connected with the part
	containing the test electrode through a capillary ending in its vacinity.
	The entire vessel was sealed against outer air by a simple construction in
35	valves as well as by an overflow reservior.
40	First the frequency and potential dependence of both components of the
	alternating current resistance is derived for the entire over voltage area under
	study. If the small perodic changes in the different magnitudes caused by the
45	sinusoidal alternating current are designated by Δ, and if the effect of molecular
	hydrogen adsorbed on the electrode surface is also considered, the following
	NA\$A
50	-
	Even Roman Odd
	Even Roman Odd


```
If c_{H} is practically equal to 0, which is the case when active platinum
  electrode in the potential range \eta > +50 MV, we simply read expressions
   (-11,12) in the following way:
                                      C_p = C_D + \frac{C_s}{1 + \omega^2 r^3 C!}
                                                                                      (15)
10
                                                                                      (16)
        These formulae have already been derived with special assumptions by Dolin
15 and Ershler [11] for the positive over voltage area.
       Tests on Active Platinum Electrodes
        We shall first discuss the measurements conficthe alternating current resistance
20
  of smooth, active platinum electrodes with positive over voltage (n \ge 0). The
  electrode was constantly rinsed with molecular hydrogen and the corresponding
   over voltage instituted by applying a definate voltage across the total cell in
25
   the_manner_described_in section_1. Figure_3_gives the plot_of the capacity
   calculated for the parallel circuit and Fibure 3b gives the plot of the resistance
  conductivity (1)/R_{\rm p} of the pertinent platinum electrode with a geometrical
  surface of 0.069cm<sup>2</sup> for various frequencies against the potential.
curves, particularly with frequencies \nu \le 1.7 kHz, show a characteristic slope
  with two clearly marked maxama at \eta = +100 mV and +200 mV in a medium frequency
^{35} range, as do the (1)/R - n curves. Similar results were obtained earlier by
  \overline{\text{Dolan}} and Ershler [11] (although the maximum \eta = +200\text{mV}) and by Eucken and Weblus
   [12,13]. Along with the impedance measurements mentioned, the pertinent voltage
40 was likewise determined in all cases (4). This, as always, constantly showed an
   anodic limiting current on active platinum electrodes which amounted in the
   present case from \eta = +50 \text{mV} to 730 (\mu A)/cm<sup>2</sup> and was at least mainly determined
   by the stream of molecular hydrogen to the electrode [14].
                                            NASA
50
                                                                                     0dd
```

Roman

Although the resistance component in this potential range forms only a small part of the alternating resistance and therefore the R values must be accepted with significant measuring errors, the deviations are quite far from the limit of error. The reason for this is presumed to be that the adsorption capacity, as assumed in the theory of equation (1), is not completely loss free. We intend to make a closer investigation of this finding. The potential dependence of (1)/R_p, which should be similar to that of C_n according to equation (16) with frequencies which are not too high, demonstrates this behavior only in a central frequency range for the same reason.

TABLE 2: COMPARISON OF THE R VALUES CALCULATED ACCORDING TO EQUATION (16)
WITH THOSE MEASURED AT OVER VOLTAGES OF +50mV, +150 mV and +250mV

3	η + 50 mV		+ 150	0 mV	+ 250 mV		
20	♥ (Hz)	R Call culated	R _P Measured	R Call culated	R _{pMeasured}	R, Call culated	R _P Measured
2!	10000 4000 1700 550 280 105 60	0,0438 \(\Omega \cdot \	0,0414 \(\Omega \cdot \	0,0421 \(\Omega \cdot \	0,0382 \(\Omega \cdot \	0,0705 \(\Omega \cdot \	0,067 \$\Omega \cdot \cdo

Before more conclusions about the coating of the electrode with hydrogen are discussed for the potential dependence of C_2 , the frequency dependence of C_p and C_p in the potential range $0 \le n \le +50 \text{mV}$ should be discussed. In Figures 6a and 6b C_p and C_p are presented for some over voltages against $1/\sqrt{\omega}$. For rather small frequencies the curves show the characteristic straight line slopes for the C_p molecule diffusion, as is to be expected from equations (13,14). While the rise in C_p has a concentration on the electrode, the downward slope of the linear part of the C_p has a curves drops inversely, to almost completely disappear finally for C_p as the ordinate section.

12 Even

50

Romar

) !											
ı	T-ABLE 3:	COMPARIS	SON OF THE	C _n VAI	UES CAL	GULATI	ED ACCORD	NG T	O EQUATI	ON (1	ll) WITH
i	THE VALUE		ED AT OVER			5mV	8.5mV_and				
5			+ 18,5 mV 584 μF/cm³			+ 8,5 464 μ		.		·0 246 μΓ	/cm ⁹
-	$\frac{2F^{\bullet,\epsilon_{ }}}{RT}\sqrt{2D}$	4,95 • 10 ⁻⁹ Ω ⁻¹ cm ⁻⁹ sec ^{1/9}			1,33		-1 cm-2 sec1/.		2,31 · 10 ⁻⁹ Q ⁻¹ cm ⁻⁹ scc ^{1/8}		
	r v(Hz)	C Call	,0322 <i>Q •</i> cm ⁹		C _⊆	0,0317 Q · cm ³ C Cal C Measured			0,0317 Q • cm ³ C C Call C P Measu		C
10	10000	304 μF/cm		Measured rF/cm³	300 μF		280 μF/cm		cula 255 μF/cm		PMeasure
10	4000 1700	570 μF/cm 704 μF/cm	1 ⁹ 560 μ	F/cm ⁹ F/cm ⁹	485 μF 597 μF	/cm²	480 µF/cm 610 µF/cm	8	365 μF/cm 467 μF/cm	18	351 /4F/cm ² 493 /4F/cm ³
	550 280	775 μF/cm 815 μF/cm	1 ⁹ 740 μ 1 ⁸ 785 μ	F/cm ⁹	725 μF 825 μF	/cm ^g	725 μF/cm 855 μF/cm	8	656 μF/cm 825 μF/cm	8 · · · · ·	713 μF/cm ² 859 μF/cm ²
	105 60	895 μF/cm 965 μF/cm	969 <i>u</i>	F/cm ⁹	1030 μF 1210 μF	cw _a .	1005 μF/cm 1200 μF/cm	•	1181 μF/cm 1480 μF/cm		1195 μF/cm ⁹ 1515 μF/cm ⁹
15	30 TABLE 4:	1070 µF/cm	1070 A SON OF THE		1510 μF, JUES CAL		1510 μF/cm ED ACCORD		2000 μF/cm O EQUATI		2000 μF/cm⁹ 12) WITH
	—		ED AT OVER	Р	SES +18.	5mV, -	+8.5mV and	1 OmV	T	• • • •	
-		ب ب	وموسيت ودائي فيدن	· · · · · · · · · · · · · · · · · · ·		· 	· · · · · · · · · · · · · · · · · · ·	Γ		<u> </u>	
20	η γ(Hz)	R, Call culated	5 mV R _{pMea}	sured	R Call	• 8,5 mV ■ ed:	R _p Measured		R Call culated	<u> </u>	R _{PMeasured}
. \		149 \$\Omega \cdot \cm^2	0,0431 Ω · ci 0,118 Ω · ci		0611 Ω · cm 160 Ω · cm	0,0	1435 Ω · cm ³ 120 Ω · cm ³	0,08	374 Ω · cm ² 37 Ω · cm ²	0,0	63 Ω · cm ⁹ 31 Ω · cm ⁹
1	1700 0,	459 Ω · cm ⁹ 97 Ω · cm ⁹	0,366 Ω · ci	m ^a 0,	416 Ω·cm	0,2	.92 Ω · cm ²	0,34	14 Ω · cm ¹ 07 Ω · cm ¹	0,2	67 Ω · cm ⁹ 30 Ω · cm ⁹
25	280 3,	76 Ω·cm ⁹ 20 Ω·cm ⁹	2,41 Ω · ci 4,86 Ω · ci	m * 1,	72 Ω • cm ¹	2,7	2 Ω · cm ²	1,00 1,71	Ω · cm ⁸	1,6	72 Ω · cm ⁹ 8 Ω · cm ⁹
) }	60 10, 30 14,		6,75 Ω·ci 10,3 Ω·ci					2,21 3,10			6 Ω · cm ¹ 9 Ω · cm ¹
4	_	and in the comments were a first					# # # # # # # # # # # # # # # # # # #				
30	5000			15		-	m1 · - · - 1-			· (
ļ	ye .	-	•				This is be				
} i							after rea			**	
35	1						ing (i.e. to increas				l l
	3								3		
:	900	3	de -	Re :		2	nd thus -2		. 4		j
40	1	•	e en	_/	1 1		to increas			-	
40	(CAND)	·500 ·1000	•2007 19(mk) —	m			ge drop ⁵ .			10	1
	1	F	igure 7	<u>.</u>	+ 1		ling to E				l l
,-		_ - ·	•				ically in				**
45			nce of the and of the				function igure 7).		• • • • • • • • • • • • • • • • • • • •		1
	Coverage	$\Theta^2(\times = \Theta)$	computed :	$from \int_{0}^{\infty} C$	$2^{\mathrm{d}\eta_{\mathbf{k}}};$		aturation		• •		l l
	+0 V00111)			71.77.6	ά					
50	Such an	increase	of C ₂ in	the ove	rvolta	ge rai	nge η∷< 0	has	actually	beer	n observed
	on_platii	num <u>-plate</u> c	l_pla€inum	_with_a	_decrea	se_in	<u>n.</u>				

_____ Even Roman

curve was standardized in such a way that the value 1 was assigned to the maximum degree of coverage bending clearly toward the limiting value as early as $\eta = 10.5$ mV. If we compare this curve with the one from Voelkl [16] by means of charging eurves, thus according to the curve of coverage obtained by a completely independent and different method (marked by points in Figure 7), we reach a very good agreement. In this way our assumptions about the covering of the electrode with atomic hydrogen is best confirmed. Figure 8 compares the coverage curve (solid diamond points) found experimentally in this work and also independently in the work Voelkl with the coverage curves theoretically computed for the θ values (0.99, 0.95, 0.90) on the basis Langmuir isotherms according to equation (18).

 $\eta = \frac{RT}{2F} \cdot \ln \frac{\epsilon_{H_0}}{{}_{0}^{\epsilon}} = \frac{RT}{F} \ln \frac{1-\Theta}{\Theta} \frac{\Theta_0}{1-\Theta_0}$ (18)

As is seen, the curves occulated drop much faster with increasing potential then 25 does the coverage curve experimentally determined. The marked maxima of the $\frac{C_2}{L_2}$ - n_k and $1/R_p$ - n_k curves (Figure 3b) agree with this finding in such a way as to show that there are not only one, but a number of types of atomic hydrogen 30 adsorption on active platinum electrodes and that therefore the coverage curve found experimentally comes into existance through the overlapping of several discreteeLangmuir isotherms (cf. also Eucken and Weblus [12]). If we assume not only several (discrete heterogeneities, but very small different kinds of H adsorption centers (continuous heterogeneity), to which various Langmuir isotherms with different coefficients apply, the result is the Temkin isotherm [21] based This isotherm, from its derived linear $\Theta - \eta_{L}$ on a definate distribution. relationship, represents a far reaching approach to the experimental coverage curve in the potential $+50 \,\mathrm{mV} < \mathrm{h} < +300 \,\mathrm{mV}$, because in it the clear maxima of the c_2 - η_k curve appears only weakly because of the equalizing effect of integration. Figure 7 shows that with η = +50mV about 80% of the electrode surface is still covered with atomic hydrogen, although the surface is practically free of molecular hydrogen. The spliting of the H₂ molecules into H atoms also takes 50 place on a far wider surface, uninhibited in comparison with H2 diffusion.

Even

20

Roman

1<u>5</u> 0dd

This shows that from a certain cathodic current density 1/46 70.0mV (cf.Figure 11). on the H₂ concentration on the electrode surface no longer increases because of This demonstrates that the the removal of the hydrogen by blister formation. limiting value of diffusion over voltage found earlier on active palladium electrodes [24], also applies to active platinum electrodes. The difference $\Delta \eta = \eta - \eta_d$ between 10 the measured and calculated over voltage, likewise shown in Figure 11, turns out to be approximately proportional to the current density. The slope of the $\Delta \eta - i$ straight lines has a value of 0.0725Ω. cm². If the Ohm resistance of the elec-Pagtrolytersolution, determined quite exactly in another way with 0.0475Ω•cm² the remainder of $0.025\Omega \cdot \text{cm}^2$ is practical ly identical to the (dn/di) value of 25 <u>0.027Ω•cm²(lfound in alternating current</u> measurements for $\eta < -62.5$ mV. Thus in the difference $\Delta\eta$, in addition to the 30 resistance over voltage n_o always determined, there is also a determinable portion of mean over voltage which, as a result of the high exchange current Comparison of the $(1)/\omega C_2$ density of about 0.9 A/cm^2 in the cath-Straight Lines Measured in the Potential Range n ≤ - 10.5mV odic over voltage range investigated, is still linearly dependent on the 40 current demsity. Finally R_n, measured at 20kHz, is introduced in Table 6 for the total potential range investigated with the various h values. approximately represents, as is clear from Figure 5b, the discharge resistance 45 r = (dn/di). The table shows that form +200mV Rp (20kHz) increases inten-Sively with increasing positive over voltage. This increase has already been explained by Dolan and Ersher [11] as caused by the decreasing coverage of the 50 electrode surface with adsorbed H atoms as the over voltage rises. However, in the range $n \le \pm 200$ mV, R_n (20kHz) remains approximately constant, while it should

_1.8__ Even

15

Roman

pass through a minimum, on the assumption that the H ion discharge is possible only at vacant points of the surface [25] and then increase again. This indien 5 cates that the discharge of the H ions can also take place at occupied points. In order to show how the discharge resistance are in connection with a direct current flux makes itself felt along with the diffusion resistance (dn,)/di [26] as a function of potential, the numerical values of the quotient (r)/dnd/di had been introduced in Table 7. For calculation of $(dn_d)/di$ equation (21) $\frac{d\eta_d}{di} = \frac{RT}{2F} \frac{1}{1 - i/i_{gr}} \cdot \frac{1}{i_{gr}}$ (21)15 was used with the experimental value of $730 \mu \text{ A/cm}^2$ for imeasured. seen from the table, the discharge obstruction relative to diffusion becomes 20 clearer and clearer as the cathodicvoveravoltage increases. A similar comparison of r with the value (dn)/di, found from the inclination of the current voltage curve, corresponding to our (dn_d)/di, was carried out by Dolan, Ershler and Frumkin [27] on platinum in ln-HCl with $\eta = 0$. For the quotient $(r)/(d\eta)/di$, these authors found the value $4.55 \cdot 10^{-2}$, while we found $1.76 \cdot 10^{-3}$ at n = 0. Thus a relatively essentially smaller passage inhibition occured on our electrodes. With our measurements an exchange current density of about 0.9A/cm2 in the range $30\,\text{n} < +200\text{mV}$ can be computed from R (20kHz). At the moment we are still not able to distribute this numerical value into various discharge mechanisms according to Volmer [28] and Horiuti [29, 30]. A few tests were also carried out on platinum plated platinum. Because of 35 the extraordinary small resistance values, we had to limit our measurement to the low frequency range ($v \le 280 \text{ Hz}$). The tests led to the result that, in 40 counterdistinction to smooth platinum, the impedance was determined at only in the range of positive but also of negative over voltages, predominately through a large adsorption capacity which even increased somewhat with a drop in po-In accord with equation (9), it seems that considerable molecular hydrogen, in addition to the atomic hydrogen in the cathode over voltage range, was also adsorbed as a result of the much greater actual electrode in comparison to the smooth platinum. The diffusion of the molecular hydrogen does not be-50 come very noticable here, because only the much smaller geometric surface is

Even

Roman

bb0

4	் வே				
	AS THE	· contra		ш	
5			Page One Title	TANGENT (dn _d)/di OF THE'CURRENT VOLTAGE n < +50mV; ARE RESULTS FROM R _p (20kHz)	The state of the s
	, AS WELL THE RANGE	290 70,2	Cc 8 + 10.004 itle	I VO)	735.0
	THE	- 290 - 91, - 70,	+	RREN' M R P	
10	EUN IN	- 145 - 76,5 - 65,5	유 ·	E ' CUJ FROJ	368,0
'	ACCORDING TO EQUATION (20) AND WITH THE MEASURED OVER VOLTAGE	 	2,00	_{ld})/di OF THE'CURRENT VOLTA ARE RESULTS FROM R _p (20kHz)	32,0
15	(20) (20)	- 72,5 - 62,5 - 58,0	-10,5 -6,2,20 7 + 250,0 7 5,10	di O	191,0
	TON OVER	- 29,0 - 48,0 - 46,5	-18.0 2,96 +200.0 2,87	n _d)/ ARE	110,0
	T T T T EQUATION SURED OVER	N N B		NGENT (dr < +50mV;	1 =
20	TO E		32.0 -23.5 2,94 -3.10 5.0 +150.0 2,88 3,05 pointso	NGEN < +5	18,0 70,0
	ING HE M	- 7,25 - 32,0 - 31,3 points	2,0 2,94 2,88 poi	E TA	0,5 - 2,5 points
25	ACCORDING TO WITH THE MEAS	3,62		AND THE 50mV <	
	1	- 3,62 -23,5 -23,2		r AN (1.7)	6,0 -1
	calculated , compared	- 2,17 -18,0 -18,3 :ate		RESISTANCE r IN THE RANGE gr = 730µA/cm	
30	SALCI EON	-10,5 -18,0 -10,5 -18,3 indicate	62,5 -4 2,83 -4 +75,0 +75,0 indica	SISTA THE = 73	0 17,6 indicate
-	SS, GEN	as 1 (2) V/	as as		1 1
35	Values, Calculated HYDROGEN, COMPARED	-0,44 - 1,0 - 2,17 - 2 -6,0 -10,5 -18,0 -2; -5,75 -10,5 -18,3 -2; Commas indicate decid	I !	CHARGE ENTØAL WITH	+ 8,5 9,6 Commas
			- 91.5 2,70 + 18.5 3,00 Note:	DISCI PONTEI (21)	
	OVER VOLTAGE FOR MOLECULAR IV:	0 1	N N		+ 18,5 4,9 Note:
40	/ER /	+ 0,33 + 7,8 1 THE		QUOTIENT FROM THE A FUNCTION OF THE /di FROM EQUATION	
		+ 0,53 + 18,5 + 20,2	η (mV) R _p Ω.cm ² .10 ³ η (mV) R _p Ω.cm ⁴ .10 ⁴	NT FI ION (η (mV) τ αημ αημ αημ αν
45	DIFFUSION, QUATION, n ≤ +50 m	S) (TITEL)	\\ \frac{5}{2} \qquad \qqquad \qquad \qqquad \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqq \qqqq \qqqq \qqqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqqq \qqqq \qqq \qqqq \qqq \qqqq \qqqq \qqq \qqq \qqqq \qqqq \qqq \qqq \qqqq \qqq	OTIE UNCT FROI	7 (m
;	DIFFUSION, EQUATION,	i mA/cm ² nmeas ncalc (mV) rcalc (mV) E 6: DEPENDENCE OF THE	" " " " " " " " " " " " " " " " " " "	⋖ \	
		i mA/can meas nate calca.	NA\$A	TABLE 7: CURVE AS AND ((dn _d)	
50	TABLE 5: NERNSTS	i n n o		TABLE CURVE AND ((d	
,					
	L20_ Even	-	Roman		0dd

50


```
Pageferences e
5
         Kammermaier, H., Dissertation, Technicall University, Munich, 1955.
    1.
         Opitz, G., Hichfrequenztechn u. Elektroakust, Vol. 49, p. 52, 1937.
         Gerischer, H., Z. Elektrochem. Berl. Bunsenges. physik. Chem., Vol. 59,
    3.
            p. 9, 1954.
10
    4.
         Elmore, W. C. and M. Sands, Electronics, New York, p. 99, 1949.
         Breiter, M., H. Kammermaier and C., A. Knorr, Z. Elektrochem. Ber. Bunsenge's,
    ٠5.
            physik. Chem., Vol. 58, p. 702, Figure 2, 1954.
         De Boer, J. H., "Electron Emission's and Adsorption Phenomena," Leipzig,
    6.
            p. 46, 1937.
15
    -7.
         Grahame, D. C., J. Electrochem. Soc., Vol. 99, p. 370, 1952.
         Gerischer, H., Z. physik. Chem., Vol. 198, p. 28, 1951; Vol. 201, p. 55,
    -8.
            1952; N. F. p. 278, 1954.
   -9.
         Warburg, E., Ann. Physik, Vol. 6, p. 125, 1901.
   -10.
         Krueger, F., Z. physik. Chemier Volle 45 Jupe 1, 1903.
20
         Dolin, P. and B. Ershler, Acta Physiocochim., USSR, Vol. 13, p. 747, 1940.
   -11.
         Eucken, A. and B. Weblus, Z. Elektrochem. angew. physik. Chem., Vol. 55,
   -12.
            p. 114, 1951.
   -13.
         Wicke, E. and B. Weblus, Z. Elektrochem. Ber. Bunsenges, physik. Chem.,
            Vol. 56, p. 169, 1952.
25
         Breiter, M., C. A. Knorr and R. Meggle, Z. Elektrochem. Ber. Bunsenges,
    -14.
            physik. Chem., Vol. 59, p. 153, 1955.
         Robertson, W., J. Electrochem. Soc., Vol. 10, p. 194, 1953.
   -15.
         Breiter, M., C. A. Knorr and W. Voelkl, Z. Elektrochem. Ber. Bunsenges.
   -16.
            physik. Chem., Vol. 59, p. 681, 1955.
30
         Frumkin, A. and A. Slygin, Acta physicochim. URSS, Vol. 3, p. 791, 1935 and
   -17.
            and Vol. 4, p. 911, 1936.
         Ershler, B., Acta physicochim. URSS, Vol. 7, p. 327, 1938.
   -18.
         Pearson, J. D. and J. V. Butler, Trans. Faraday Soc., Vol. 34, p. 1163,
   -19.
            1938.
35
   -20.
         Frumkin, A., P. Dolan and B. Ershler, Acta physicochim. URSS, Vol. 13, p.
            793, 1940.
   -21.
         Temkin, M., J. physik. Chem., Vol. 15, p. 296, 1941.
   -22.
         Randles, E. B., Discuss. Faraday Soc., Vol. 1, p. 11, 1947.
         Ershler, B., Discuss. Faraday Soc., Vol. 1, p. 269, 1947.
    -23.
40
         Clamroth, R., and C. A. Knorr, Z. Elektrochem. Ber. Bunsenges. physik.
    -24.
            Chem., Vol. 57, p. 399, 1953.
         Breiter, M. and R. Clamroth, Z. Elektrochem. Ber. Bunsenges. physik.
    -25.
            Chem., Vol. 58, p. 493, 1954: e.g., equation (46).
    .26.
         Gerischer, H., Z. Elektrochem. angew. physik. Chem., Vol. 55, p. 98, 1951.
45
         Dolin, P., B. Ershler and A. Frumkin, Acta physicochim. URSS, Vol. 13,
   -27:
            p. 779, 1940.
                                          NA$A
50
```

Roman

Even

<u>23</u> 0dd

